
Hands-On Universe/Modeling

Unit VIIIa: Universal Gravitation and Kepler's 3rd Law



HOU Modeling Unit p. 2

Contents
INTRODUCTION................................................................................................................................................ 3

LABORATORY ACTIVITY 1:
QUANTIFYING THE FORCE OF GRAVITY AT THE EARTH’S SURFACE....................................... 6

WORKSHEET 1: GRAVITATIONAL FORCE AND MASS..................................................................... 14

LABORATORY ACTIVITY 2:
EFFECT OF DISTANCE ON THE GRAVITATIONAL FORCE............................................................. 18

LABORATORY ACTIVITY 3:
CAVENDISH'S EXPERIMENT AND THE DETERMINATION OF G .................................................. 27

WORKSHEET 2: CAVENDISH'S EXPERIMENT ..................................................................................... 31

DERIVATION OF KEPLER’S THIRD LAW FROM
NEWTON’S LAWS OF MOTION & LAW OF UNIVERSAL GRAVITATION.................................... 33

WORKSHEET 3:
CALCULATING CENTRIPETAL & GRAVITATIONAL FORCES ON THE MOON ....................... 36

WORKSHEET 4: CALCULATING THE MASS OF THE SUN ............................................................... 37

LABORATORY ACTIVITY 4: GEOMETRY OF THE JUPITER-MOONS SYSTEM ........................ 38

LABORATORY ACTIVITY 5: MASS OF JUPITER LAB........................................................................ 42

WORKSHEET 5: MASS OF MILKY WAY GALAXY CENTRAL BLACK HOLE ............................. 45

WS5 TEACHER NOTES:
APPLYING KEPLER’S THIRD LAW TO NON-CIRCULAR ELLIPTICAL ORBITS....................... 46



HOU Modeling Unit p. 3

Introduction
This unit is the result of work in June 2004 by high school teachers expert in both Hands-
On Universe (HOU, http://lhs.berkeley.edu/hou, based at University of California,
Berkeley) and Modeling Instruction Method (http://modeling.asu.edu,  based at Arizona
State University). The Modeling Method, grounded in Modeling Theory of Physics
Instruction—educational research by David Hestenes and collaborators since 1980,
corrects many weaknesses of the traditional science lecture-demonstration method,
including fragmentation of knowledge, student passivity, and persistence of naive beliefs
about the physical world. The Modeling Method promotes coherence by organizing the
course around a small number of scientific models.

Synopsis of the Modeling Method

Coherent Instructional Objectives
• To engage students in understanding the physical world by constructing and using

scientific models to describe, to explain, to predict and to control physical phenomena.
• To provide students with basic conceptual tools for modeling physical objects and

processes, especially mathematical, graphical and diagrammatic representations.
• To familiarize students with a small set of basic models as the content core of physics.
• To develop insight into the structure of scientific knowledge by examining how

models fit into theories.
• To show how scientific knowledge is validated by engaging students in evaluating

scientific models through comparison with empirical data.

Student-Centered Instructional Design
•  Instruction is organized into modeling cycles

[http://modeling.asu.edu/modeling/mod_cycle.html] each of which has two stages:
model development and model deployment. Roughly speaking, model development
encompasses the exploration and invention stages of the learning cycle, while model
deployment corresponds to the discovery stage. The two stage modeling cycle has a
generic and flexible format which can be adapted to any physics topic. Typically, the
cycle is two or three weeks long, with at least a week devoted to each stage, and there
are six cycles in a semester, each devoted to a major topic. Each topic is centered on
the development and deployment of a well-defined mathematical model, including
investigations of empirical implications and general physical principles involved.

• The teacher sets the stage for student activities, typically with a demonstration and
class discussion to establish common understanding of a question to be asked of
nature. Then, in small groups, students collaborate in planning and conducting
experiments to answer or clarify the question. Though the teacher sets the goals of
instruction and controls the agenda, this is done unobtrusively. The teacher assumes
the roles of activity facilitator, Socratic inquisitor, and arbiter (more the role of a
physics coach than a traditional teacher). To the students, the skilled teacher is
transparent, appearing primarily as a facilitator of student goals and agendas.

• Students are required to present and justify their conclusions in oral and/or written
form, including a formulation of models for the phenomena in question and
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evaluation of the models by comparison with data.
• Technical terms and concepts are introduced by the teacher only as they are needed to

sharpen models, facilitate modeling activities and improve the quality of discourse.
• The teacher is aware of typical student misconceptions to be addressed as students are

induced to articulate, analyze and justify their personal beliefs.

Prerequisites for this unit
Before beginning this cycle, students should be
a. familiar with the HOU Image Processing software
b. have previous experience with kinematic models so they have clear concepts of

velocity and acceleration.

Objectives of this unit
• Discover Newton's Law of Universal Gravitation.
• Derive and apply Kepler's Third Law.
• Understand that the force of gravity is what holds planets and satellites in their orbits,

and that this force is the centripetal force.
• Understand the geometry of a parent body-satellite orbital system.
• Determine the orbital period and radius of one moon based on actual images of Jupiter

and its moons.
• Determine the mass of Jupiter by using the measured orbital period and radius.

Sequence
Laboratory Activity 1 ........Quantifying the Force of Gravity at the Earth's Surface
Worksheet 1 ......................Gravitational Force and Mass
Laboratory Activity 2 ........Effect of Distance on Gravitational Force
Laboratory Activity 3 ........Cavendish's Experiment and the Determination of G
Worksheet 2 ......................Cavendish's Experiment
Teacher Notes ...................Derivation of Kepler's 3rd Law
Worksheet 3 ......................Calculating Centripetal & Gravitational Forces on the Moon
Worksheet 4 ......................Calculating the Mass of the Sun
Laboratory Activity 4 ........Geometry of the Jupiter-Moons System
Laboratory Activity 5 ........HOU "Mass of Jupiter"
Worksheet 5 ......................Milky Way Galaxy Central Black Hole
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Unit VIIIa

Laboratory Activity 1: Quantifying The Force of Gravity
at the Earth’s Surface

Teacher Notes

Note for Modeling Teachers:  This is the same lab students did in Unit 4, but with an
emphasis on the nature of gravitational forces.

Overview
Add basic idea of  f prop. to mM
Students will use a simple lab involving the use of a spring scale and various masses to
determine the gravitational field strength at the surface of the Earth (9.8N/Kg).  The
influence of varying mass on the strength of gravitational forces is explored as one step
toward the ultimate goal of constructing Newton’s Law of Universal Gravitation.  Follow
up labs will provide the opportunity to explore the exact influence of distance on
gravitational forces and to calculate the value of the Constant of Universal Gravitation,
G.

The lab and the associated extension activities will also provide opportunities to address
common misconceptions students often bring to a study of gravity.

An understanding of the nature of gravity and its influence on objects at the Earth’s
surface can be a springboard to understanding the nature of gravity as a universal
phenomenon. Most historical accounts suggest that Newton simply intuited that gravity
was a universal force.  He reasoned that the force holding the moon in its orbit around the
Earth is the same force that causes an apple to fall toward the ground from a tree at the
Earth’s surface.  Students will not necessarily fully accept this view.  Other
misconceptions about gravity may exist, such as

• Gravity does not exist in space (the astronauts in the shuttle are weightless, after all).
• Mass and weight are the same.
• The force of gravity and the acceleration due to gravity describe the same

phenomenon.
• The force of gravity is the same for all objects in freefall at the Earth’s surface.
• Gravitational forces do not obey Newton’s Third Law (i.e. the force of the Earth on a

small pebble is greater than the force of the pebble of the Earth).

An opportunity to address these misconceptions is provided by a relatively simple lab
designed to quantify the relationship between masses suspended on a spring scale and the
force of gravity on those masses.
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Pre-lab Discussion

Pre-lab discussion can begin with a simple demonstration such as throwing a ball
vertically into the air or dropping an object to the ground and exploring the following
questions:

• What happened?  Why did this occur?

• What factors influence the strength of the gravitational force in a situation like this?

• How would this event differ if we were to repeat it while standing on the surface of the
moon?  Why?

0.5 Kg

Spring Scale

Suspended Mass

Additional background discussion might focus on the
concept of force (an interaction between two objects
that potentially causes acceleration) and on the
difference between weight and mass.  These are
potentially confusing concepts and explicit dialogue
with students about their precise meanings is
encouraged. Mass is also commonly defined as the
amount of matter in an object (a definition students may
bring with them from earlier studies in chemistry),
though this definition is somewhat incomplete in the
study of mechanics.  Mass is best defined as a property
of material objects that resists acceleration. Mass is a
measure of the amount of inertia an object possesses.
Weight is a force and is the result of the gravitational
interaction between at least two objects.  Weight
depends on the mass of the objects in question (the
Earth and a person, for example), but mass and weight
are not equivalent.

Next, show students a mass suspended on a spring scale.  Ask students what they see
happening.  Record student responses on the board or overhead.

Follow up with the question, what can be measured?  Again, record student responses.

Facilitate thinking about the fact that the spring scale measures the force of the Earth
pulling on the mass.  Ask:  Why is the spring stretched?  What pulls on the suspended
object? A common response to this question is simply “gravity”.  However, we suggest
insisting on students naming the Earth as the object pulling on the suspended object in
order to begin thinking of gravity as a mutual force between two objects, not merely an
influence experienced by individual objects at the Earth’s surface.  Students should be led
to focus on the potential to determine the relationship between the mass of the suspended
object (independent variable) and the force of the Earth on that mass (dependent
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variable).  Naming the force gravity is not necessary at this point, though students will
likely freely use the term.  In fact, there may be some benefit to referring to the force
measured on the spring scale as the “force of the Earth on the suspended object”, since
this emphasizes the fact that the spring scale measures the gravitational interaction
between the Earth and the suspended object.

Student Lab

Purpose
To determine the graphical and mathematical relationship between the mass of an object
suspended on a spring scale and the force of the Earth acting on that mass.

Materials
Spring scales with Newton readings
Varying masses of known mass values
Graph paper or a graphing computer program such as Excel or Graphical Analysis

Lab Procedure

In groups of no more than three, students
measure the force of gravity acting on at
least five known masses.  The five data
points can be graphed as indicated below.
The mass of the suspended object in Kg is
the independent variable and the force of
the Earth on the object in Newtons is the
dependent variable.  Sample data is shown
below.

Suspended Mass (Kg)

Force (N)

Data Collection

Mass of Suspended Object
(Kg)

Force of Earth on Object
(Newtons)

0.1 1
0.2 2
0.3 3
0.4 4
0.5 5
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Data Analysis

The best-fit line for the sample data set suggests a slope of 10 N/Kg.  This slope
represents the “gravitational field strength” at the surface of the Earth.  Students will
likely come up with a value of 10 N/Kg, given that the precision of most spring scales is
not sufficient to allow for more precise values.  They can be encouraged to take readings
to one uncertain digit, which may yield slopes closer to the actual 9.8 N/Kg.

The mathematical equation derived from the graph can be written

€ 

Fg = (10 N
Kg
)m

Post-lab Discussion during Whiteboarding

Questions to address during post-lab discussion:

• What does the graph of the data suggest about the relationship between mass and
gravitational force?

As the mass of the object increases, the gravitational force increases as
well. The force of gravity is directly proportional to the mass of the object.
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Doubling the mass results in a doubling of the force of gravity on that
mass.  Tripling the mass of the objects results in a force of gravity that is
three times larger, and so on.

• What would the force of gravity be on 10 Kg mass at the surface of the Earth?
How do we know?

100 Newtons, based on the equation generated by the data.

•What does the slope of the graph represent?  Explain the slope in words.  Note:  the term
“gravitational field strength” does not have to be used here, and, in fact, probably
should not be used until students have fully explained the conceptual meaning of the
slope.

The slope represents the strength of the gravitational force on every
kilogram at the Earth’s surface.  For every 1 Kg of mass, the Earth pulls
with a force of approximately 10 Newtons.

•What would you expect a similar graph to look like if data were collected on the moon?
Why?

The same experiment on the moon would result in a graph that has a
smaller slope since the force of gravity on each Kg at the moon’s surface
would not be as great as the force of gravity on each Kg at the Earth’s
surface.

•Draw a force diagram for the situation.  What is the source of the force acting on the
suspended mass?

Fearth

Fspring

Including at least a portion of the Earth in the drawing can help students
to visualize the force of gravity as an interaction between the Earth and
the suspended mass.  The forces drawn above can be quantified for any
specific mass.

•How many objects must be present for a gravitational force to exist?  In the interaction
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between the Earth and the suspended mass, which object exerts the greater force?
Why?

Two objects are required for a force to exist.  Newton’s Third Law
predicts that any force is equal and opposite for the two objects involved.
Here the two objects are the suspended object and the Earth. The force of
the Earth on the suspended object is equal to the force of the suspended
object on the Earth.

Students should be encouraged to consider this concept carefully.  A
possible line of questioning might include the following:

What is the weight of a 5 Kg bowling ball at the surface of the Earth? (50 Newtons)
What is the weight of the Earth on the surface of a 5 Kg bowling ball? (Also 50

Newtons).

A clear understanding of why the answer is the same requires students to
truly understand a number of easily confused concepts.  Similar questions
are given in the follow up worksheet for this lab (Worksheet 1).

•What can we conclude about the influence of mass on gravitational force?

The force of gravity is the result of an interaction between (at least) two
masses and is influenced equally by the mass of each object.  The force
experienced by the two objects is equal.

Put into question form like above.XXXXXXXXXXXXX

The slope of the line representing the data is a measure of the gravitational field
strength at the surface of the Earth.  Students will likely recognize the similarity between
this value and the acceleration due to gravity previously studied (9.8 m/sec/sec).  We
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suggest being very explicit in making a distinction between these two values.  The
strength of Earth’s gravitational field, g, can be used to determine the magnitude of the
gravitational force on a specific mass (Fg = mg) whether the object is in motion or not.
The acceleration due to gravity is the motion resulting from the force of gravity acting on
a particular mass.  The gravitational field strength determines the gravitational force on a
particular mass, while the acceleration due to gravity is the motion caused by that force.
The fact that these two phenomena have the same value is the result of how the Newton
was defined (the force required to accelerate 1 Kg at 1 m/s/s).  The distinction between
the strength of a gravitational field and the acceleration due to a gravitational force is
often overlooked in introductory physics courses.  However, explicit distinctions can help
students to arrive at a deeper understanding of central concepts in mechanics and will
provide a basis for a clearer understanding of the concepts of electric field, electric force,
and electric potential studied later in the course.

It can be helpful for students to begin thinking about the reading on the spring scale as a
measure of the force of the Earth on the suspended object.  Gravitational forces are the
result of an interaction between two masses, and the resulting force is equal in magnitude
for each of the objects involved regardless of their individual mass.  Most students
initially state that the Earth’s force on the mass is much greater than the mass’s force on
the Earth.  This misunderstanding can be addressed by having students draw the Earth in
force diagrams in which gravity is present.  Also, by reversing the usual question of an
object’s weight on the Earth and inviting students to consider the Earth’s weight on a
much smaller object provides an opportunity to think differently about the nature of
gravitational forces in everyday circumstances.

In this lab it is obvious that the gravitational force depends on the mass of the suspended
object.  Students may not recognize that the mass of the suspended object is, in fact, just
as important in establishing the gravitational force as the Earth is.  Without the suspended
object, a gravitational field would still be present, but the force itself requires the
presence of two masses.  Discussion of this point can help students to begin thinking of
gravitation as a universal phenomenon that results from any mass anywhere.

From the lab and post-lab discussion, students should understand that gravitational forces
are the result of interaction between at least two masses and that the force present is equal
for both masses.  The linear relationship between mass and gravitational force given by
the lab data suggests that double the mass of one of the objects doubles the gravitational
force, tripling the mass causes the gravitational force to triple, and so on.  These insights
should provide a basis on which students can understand Newton’s logic in assuming that
gravitational forces depend on the product of the two masses present.  He reasoned that if
his Third Law is true, then the gravitational forces acting on both bodies must be equal
and opposite.  Newton used the sun and Jupiter to help explore this relationship further.
If the sun, being approximately 1000 times as massive as Jupiter, is thought of as a
collection of 1000 Jupiter-sized planets, then each of the planets in the collection pulls on
Jupiter with a particular gravitational force, F.  The combined effect of each of the 1000
Jupiter-sized planets pulling together is 1000 F.  Similarly, Jupiter as an individual planet
pulls on each of the 1000 Jupiter-sized planets in the collection with a force of F.  Again,
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the total force is 1000 F.  The only mathematically logical application of this idea is to
assume that the gravitational force is proportional to the product of the masses

€ 

F∝m1m2

The Sun, equivalent to about 
1000Jupiter-sized planets

Jupiter

Jupiter pulls on the collection of 1000 
Jupiter-sized planets with a force equal to 
that of the collection of planets pulling on 
Jupiter.

Adapted from Project Physics.

Understanding the subtle difference between inertial mass (mass that resists accelerating
in the presence of a net force) and gravitational mass (mass that interacts gravitationally
with one or more other masses) can be important but can be explored later in the unit
after students have a deeper understanding of the nature of gravity.  This is a distinction
many teachers may decide to avoid, but explicit exploration of these concepts may be
appropriate.
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Name ________________________________ Date __________ Per.______

Unit VIIIa:

Worksheet 1

1.  This qualitative graph
represents the relationship
between the mass of
various objects and the
gravitational force acting
on those objects.  The best
fit line represents data
collected at the Earth’s
surface.

a.  Sketch and label the
best fit line that would
result if the same
experiment were
conducted on the surface
of the moon.  Explain your
reasoning fully.

Force of 
Gravity (N)

Mass of Suspended Object (Kg)

Force of Gravity Acting on Objects 
Suspended on a Spring Scale

b.  Sketch and label the best fit line that would result if the same experiment were
conducted on the surface of the sun.  Explain your reasoning fully.

2.  a.  The strength of the gravitational field at the Earth’s surface is approximately 9.8
N/Kg.  Explain fully what this means.
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b.  The acceleration due to gravity at the Earth’s surface is approximately 9.8 m/sec/sec.
Explain fully what this means.

3.  The diagram below represents the Earth-moon system.  Draw qualitative vectors to
represent any forces that are present.  The relative size of any forces should be evident in
the lengths of the vectors drawn.

The Earth

Explain your diagram.

4.  The diagram below represents a 2 Kg bowling ball on the surface of the Earth
(obviously not to scale).

The Earth

The Earth
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a.  Calculate the force of gravity acting on the bowling ball.  Show all steps of your
calculation, including the appropriate equation and units.

b.  What is the weight of the bowling ball?  Explain.

c.  Assume that the Earth and the bowling ball are the only objects present.  How much
does the Earth weigh in the presence of the bowling ball?  (A question for thought:  Is the
bowling ball on the surface of the Earth, or is the Earth on the surface of the bowling
ball?)  Explain.

d.  Recall Newton’s Third Law of Motion (action-reaction).  If we consider the force of
the Earth acting on the bowling ball to be the action, what is the reaction?  Explain.

4.  A (very happy) student holds a 1 Kg physics textbook at the surface of the Earth.

a.  Draw a quantitative force diagram for the textbook.  Clearly label all forces.

b.  What is the force of the textbook on the Earth?  Explain.
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6.  Under which of the following circumstances would Atlas the mighty physics student
need to use the greatest strength?  Explain fully.

The Earth

The Earth
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Unit VIIIa

Laboratory Activity 2: Effect of Distance on the
Gravitational Force

Teacher Notes

Overview
Prior to doing this lab, students should have studied circular motion (Modeling Unit 8).
They should be familiar with the concepts of centripetal acceleration and centripetal
force.  They should understand that centripetal force is not a separate force, it is just a
name for the net force on an object when the net force happens to point to the center of a
circle.  This lab, the second in this series, will provide a part of Newton's Law of
Universal Gravitation.  The first lab showed students that the gravitational force is
proportional to both masses involved.  This lab will allow them to discover that the
gravitational force varies with the inverse square of the distance between the two bodies.
This lab will also reinforce the idea that the "big" mass also influences the gravitational
force.  The third lab will introduce the value of the Constant of Universal Gravitation, G.

Pre-lab discussion
In order to get the students thinking about orbiting bodies, show the orbit simulation at
http://observe.arc.nasa.gov/nasa/education/referance/orbits/orbit3.html ("reference" is
spelled "referance" in the address) or open the provided file Orbit3.htm.  Ask students
what they observe.  Make a list of all suggestions they give and write them on the board.
Students should also write this list in their lab notebook.  (They should easily be able to
see that when the satellite is closer to Earth, it moves faster, and when the satellite is
farther away it moves slower.) After they have exhausted all responses, ask them what
factors could possibly influence the motion of the satellite.  If they seem stuck, remind
them to think of the concepts they previously studied in circular motion.  You are looking
for suggestions such as radius of orbit, mass of satellite and Earth, period of orbit, speed
of satellite, acceleration of satellite, force acting on satellite, etc…

From the given list, ask students what factors that are measurable (not ones that can be
calculated, only direct measurements).  Draw a line through any observations which are
not measurable.  Variables that should be left on the list are mass, period, and radius
(velocity, acceleration, and force are values we can calculate from the measurable
quantities).  Thinking back to their original observation that the satellite moved faster
when it was closer to the Earth, have them come up with a purpose for this lab.

Purpose:  How does the distance away from the parent body affect the velocity of a
satellite?

Prediction:  As the distance from the parent body increases, the velocity will decrease.
(or however students choose to express their ideas)
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They will need to use some of the variables from their list in order to answer their
purpose question.  Using the variables they have left on their list, ask students to make a
graph of the acceleration of an orbiting body vs. the distance between that body and the
parent body.  They will need to recognize that the acceleration we are speaking of is
centripetal acceleration (do not tell them this).  The students should decide what data
from their list is necessary to make this graph.  (They will need the radius and orbital
period in order to complete this task, although do not tell them this.)  Ideally, students
should research this data from books, the internet, or the orbit simulator.  If time or
materials do not allow for this, you can provide students a copy of an information table,
but be sure to include many variables, not just radius and period, so that the students still
have to decide on their own what to measure.

XXXX  INCLUDE SAMPLE DATA TABLES FOR TEACHERS IN AN APPENDIX

** Note:  Usually, to conduct a lab you must choose an independent and dependent
variable, controlling all others.  In this case, we have chosen to use radius and period, so
the mass of the satellite and parent body should be controlled.  The mass of the parent
body will not change, however all of the satellites have different masses.  In this case, it
does not matter because the value of acceleration does not depend upon mass (like the
acceleration due to gravity).  We suggest not bringing this up to the students, as it will
likely cause confusion.  They will probably not even ask about the mass of the satellite,
but if they do, be ready to explain why it does not matter.  Tell them that at the end of the
Lab 3, you will be able to show them clearly why it does not matter what the mass of the
satellite is.

In order to show the relevance of the mass of the parent body, you are going to want this
graph for multiple parent bodies (ask students not to use Jupiter, as we are going to do a
separate experiment on Jupiter later in the unit).  Since the process of calculating and
converting all of the numbers is very time consuming, it is best to have the class share
some data.  Each group should select a different parent body (ideally 2 groups would do
the same one, so the total for the class would be 4-5 parent bodies), and then share data so
that the class as a whole has 4-5 graphs.  You will also need this data to use in Lab 3 of
this unit.

Materials
• Data on parent bodies and satellites
• Graphical Analysis

Procedure
After students have thought about what quantities are necessary to make their graph, they
need to write a procedure.  Since there are not any manipulatives in this experiment,
students should write the procedure of what data they need and how they are going to
gather it, and how they are going to manipulate that data in order to find acceleration for
the graph.
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The students reasoning should look something like this:  The satellite is traveling in a
circular path, and therefore requires a center-pointing force to hold it in its circular path.
If there were no center-pointing force, the satellite would fly off in a straight line path.
The only force acting on the satellite is the force of gravity, pointing directly toward the
center of the Earth (or other parent body).  Centripetal force is defined as the net force
that points toward the center of the circle.  In this case, the only force acting on the
satellite is the force of gravity, and it points toward the center of the circle.  Therefore,
this force is the centripetal force.  If there is a centripetal force, there must be a
centripetal acceleration (this is what we want to graph).  This can be calculated by a =
v2/r.  The velocity can be found simply by v = circumference/period = 2πr/T.  In order to
create the graph of acceleration vs. radius, you therefore have to know the radius and
period for the satellite.

A sample procedure is below.  Make sure to check students' procedures before allowing
them to continue, paying special attention to the variables they are using and the units on
the numbers.  Remind them to use the standard units of meters and seconds.  Remember,
students should come up with this procedure on their own, not use this one.

Procedure:
1.  Choose a parent body (ex:  Earth, Sun, Saturn, etc….)
2.  Choose 5 satellites (or moons) of the parent body. (If they choose the Sun, only take

data for the first 4 planets, so that the range of data is not too large to graph).
3.  Find the radius for each satellite (making sure to measure from the center of the

satellite to the center of the parent body) and record in data table.  Make sure the
numbers have the units of meters.

4.  Find the orbital period for each satellite and record in data table.  Make sure
numbers have the units of seconds.

5.  Calculate the velocity of each satellite by using v = 2πr/T.  Be sure that the units are
m/s.  Record these values in a new data table.

6.  Calculate the acceleration of each satellite by using a = v2/r.  Be sure that the units
are in m/s2.

7.  Graph a vs. r using Graphical Analysis (teacher:  see below for instructions and hints
on graphing).

Data Collection
(Remember, each group will have data for only one parent body, but as a class, there
should be data for 4-5 parent bodies.)
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Earth:

Satellite
Radius (m) Period (s)

Shuttle 0.662 10^7 5400
Satellite 1 1.285 10^7 14520
Satellite 2 2.891 10^7 49020
Satellite 3 3.534 10^7 66240
Geosynchronous Satellite 4.216 10^7 86160

Sun:
Satellite Radius (m) Period (s)

Mercury 579 10^8 0.07560 10^8
Venus 1082 10^8 0.1941 10^8
Earth 1499 10^8 0.3156 10^8
Mars 2279 10^8 0.5936 10^8

Uranus:
Satellite Radius (m) Period (s)

Miranda 1.298 10^5 1.222 10^5
Ariel 1.908 10^5 2.177 10^5
Umbriel 2.658 10^5 3.580 10^5
Titania 4.361 10^5 7.522 10^5
Oberon 5.831 10^5 11.63 10^5
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Data Analysis
Earth:

Satellite
Radius (m) Velocity (m/s) Acceleration (m/s2)

Shuttle 0.662 10^7 7.699 10^3 8.954
Satellite 1 1.285 10^7 5.558 10^3 2.404
Satellite 2 2.891 10^7 3.704 10^3 0.4746
Satellite 3 3.534 10^7 3.351 10^3 0.3178
Geosynchronous
Satellite

4.216 10^7 3.073 10^3 0.2240

Sun:
Satellite Radius (m) Velocity (m/s) Acceleration (m/s2)

Mercury 579 10^8 4.810 10^4 0.03979
Venus 1082 10^8 3.501 10^4 0.01133
Earth 1499 10^8 2.983 10^4 0.005936
Mars 2279 10^8 2.411 10^4 0.002551

Uranus:
Satellite Radius (m)  Velocity (m/s) Acceleration (m/s2)

Miranda 1.298 10^8 6.676 10^3 0.3431
Ariel 1.908 10^8 5.504 10^3 0.1588
Umbriel 2.658 10^8 4.663 10^3 0.08180
Titania 4.361 10^8 3.591 10^3 0.02998
Oberon 5.831 10^8 3.149 10^3 0.01701

**Helpful Hints for Graphing:
One of the easiest programs for graphing is Graphical Analysis by Vernier Software
(www.vernier.com).  You can obtain a site license for this program for just $80.  When
graphing the data, start by graphing a vs. r.  Since the numbers are so large, the easiest
thing to do is to express all radii to the same power of 10. (See above data tables for an
example.)  When you enter the radii, enter only the mantissa, not the exponent.  Enter the
exponent value in with the units (ex: 10^8 m).  Enter the acceleration data without
exponents at all.  Then when analyzing the slope, you can incorporate the exponent back
into the number.
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Data Analysis (continued)
Once you have a graph of a vs. r, students should recognize the general shape of the
graph as some type of inverse.  They should hand sketch the curve they see.

Verbal Model:  As the radius of the orbit increases, the acceleration of the satellite
decreases.
Math Model:  a = k (1/r)

Since a curved graph does not give any direct information about the precise mathematical
equation describing this relationship, it is necessary to linearize the graph to get this
valuable information (a common approach in the Modeling Method).  Graphical Analysis
does have a curve fitting feature, but it is best not to use this tool.  Students should
produce test plots of different relationships until they find the one that shows the graph as
linear.  Students have an easier time analyzing a linear relationship, rather than the
equation that seems to magically appear when done by the computer curve fitting tool.

In order to linearize the graph, students will most likely first try to modify the graph by
plotting a vs. 1/r since the graph is an inverse relationship.  In order to produce the test
plot, students should create a new column of data labeled "1/r".  They can create this
column by hand, or Graphical Analysis can do it for them by going to the "Data" menu
and selecting "New Calculated Column".  You can then enter the formula you wish the
computer to use to create a new data column.  Remember to also change the units of the
column.
This however, is not the correct relationship, and so when the students try this test plot,
they will see that the graph is still not linear.
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Thus they should try another type of inverse, a vs. 1/r2.  It is likely that students have not
yet seen an inverse squared relationship, and so they may need a hint at this point.  When
they plot a vs. 1/r2, they should see that they data now fit a straight line.  On Graphical
Analysis, use either the "Linear Fit" function or "Regression" to have the computer fit a
line to the data, and give values for slope and y-intercept.
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Verbal Model:  As the inverse square of the radius increases, the acceleration of the
satellite increases proportionally.
Math Model:  a = (3.92 10^14 m3/s2) (1/r2) + 0 m/s2

It is not necessary at this point to explain the meanings of the slope and y-intercept.

Post Lab Discussion
After all data has been collected and graphs have been drawn and analyzed, each group
should write their findings on their whiteboard.  Possible things to draw on the
whiteboard are:  the a vs. 1/r and a vs. 1/r2 graphs and their explanations, the process of
finding the acceleration, the data table, the parent body used, and the purpose of the lab.
The teacher can decide how much detail to include.

After the whiteboards are drawn, the groups should display them in the front of the room
so all can see them.  The teacher should call on one group at a time to present their
findings and answer questions from the class.  The teacher should first focus on making
sure the graphs and explanations are correct.  If not, ask the class to help the group
modify their explanations or figure out what went wrong in their process.  A few groups
(with different parent bodies) should present, but it is not necessary for every group to do
so.

As students whiteboard, the teacher should have the students find similarities and
differences between each group's results.  The major similarity should be that the general
shapes of the graphs are the same, therefore showing that the relationship between
acceleration and radius is the same no matter what parent body or satellites are chosen.
Make sure that students understand the idea that acceleration is proportional to the
inverse square of the radius.  For example, ask what happens if you move the satellite
twice as far from the center of the parent body?  The acceleration is 1/4 of the original
value.

It is easier to understand this phenomenon by thinking in terms of forces rather than
accelerations.  Ask students to remember Newton's 2nd Law, where ΣF =ma.  Therefore
we can say that the acceleration is proportional to the force, so that as the acceleration
increases, the force increases as well.  Relating to this lab, when the radius increases, the
acceleration decreases, so according to Newton's 2nd Law, the forces decreases as well.
We can then draw the conclusion that the force of gravity on the satellite is less at greater
distances from the parent body.

In terms of the motion they observe, we need to explain why the satellite moves slower at
farther distances.  If we know that a = v2/r and we also know from our graph that a α 1/r2,
then we can conclude that v2/r α 1/r2.  Canceling one of the radius terms, we find that

v2 α 1/r
This explains why the satellite moves slower when it is farther away from the parent
body, as seen in the original simulation.
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Add RICH';s explanation Re: projectile around earth XXXXXXXXXXXXXX

The major difference that students should note is that the slopes are very different for
different parent bodies.  In this lab, it is not very obvious what the slope of this line
represents, as the units (m3/s2) do not provide much clue as to the physical meaning of the
slope.  Since we cannot easily find the meaning of the slope, ask students what is
different about the parent bodies that may account for the difference in slope.  Hopefully,
they will suggest the mass.  Since the mass is different for each parent body, and the
slope of the graph is different for each, one can make an educated guess that the slope has
something to do with the parent body mass (larger masses have steeper slopes).  The
slope itself is not the mass, since the units do not match, but the slope is somehow related
to the mass.  This idea will be addresses further in the next lab (Lab Activity 3).

From the a vs. 1/r2 graph, we find the following equation:

a = k (1/r2)
where k is the slope of the graph.

Therefore we can say that the acceleration is proportional to the inverse square of the
radius:

a α 1/r2

Or that when the radius increases, the acceleration decreases.

Finally, according to Newton's 2nd Law, force is proportional to acceleration so we can
rewrite this proportionality as

F α 1/r2

Or, in words, the force is larger when the satellite is closer to the parent body.
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Unit VIIIa

Laboratory Activity 3: Cavendish's Experiment and the
Determination of G

Teacher Notes
Newton demonstrated that gravitational forces are dependent upon the masses of the
object involved and the distance between their centers.  These relationships can be
represented mathematically by

€ 

Fg ∝
m1m2

r 2
In order to make this proportionality an equivalency, a constant needs to be introduced
such that appropriate units of mass and distance will yield a calculated force in Newtons.
The full version of what is now known as Newton’s Universal Law of Gravitation can be
expressed as

€ 

Fg =G m1m2

r 2

Where G represents the Gravitation
Constant.  In Newton’s day, the value
of G was not known.  To determine the
value of G from the Universal Law
would require being able to measure
the force of gravity between two
known masses separated by a known
distance.  The gravitational force
between two masses that would
practically fit in a laboratory would be
exceptionally small and therefore
extremely difficult to measure.  An
effective method of measuring such
small forces was not developed for
over one hundred years after Newton’s
initial work on the Universal Law.

The process of measuring such small forces involves the use of a torsion balance,
represented schematically at left. The spheres would usually be made of a dense material
such as lead or some other metal.  When the larger spheres are placed close to the smaller
spheres supported by the thread, the thread will twist slightly due to the gravitational
attraction between the metallic spheres.  The gravitational forces could be quantified if
the thread was first subjected to very small known forces and the resulting twisting
measured carefully.  Since the masses of the spheres and the distances between them can
be easily measured, the value of G can be calculated.
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A Sample Calculation
Suppose the larger lead spheres each have a mass of 10 Kg.  The smaller lead spheres
have a mass of 2 Kg.  The distance between the centers of these spheres is set at 0.1
meter.  Suppose also that the torsion balance measures a force of attraction between the
spheres of 1.33 X 10-6 Newtons.  Use these values to determine the value of G from
Newton’s Universal Law of Gravitation.

Cavendish obtained a value slightly larger than that calculated from the example above.
Amazingly, his value was remarkably close to the currently accepted value.  This was
quite an accomplishment considering the extremely small forces involved and the
numerous potential sources of experimental error.  Even the slightest air currents or
vibrations would make accurate readings impossible.  The currently accepted value of G
is

€ 

6.67X10−11 N ⋅m 2

Kg2

The units can be confusing, but it should be clear that the units are such that when the
value of G is used in the Universal Law of Gravitation, the end result is a calculated force
in Newtons.

The significance of Cavendish’s contribution to physics and astronomy cannot be
overstated.  With the value of G, the mass of the Earth, and, in fact, of any other body for
which appropriate orbital data can be measured, can be calculated.  In short, determining
the value of G opened up the possibility of weighing the cosmos.

PART 2: Finding the Constant of Universal Gravitation, G,
from the Lab Activity 2 data
***NOTE HERE ABOUT THE CIRCULAR REASONING OF THIS....XXXXXXXX..

Ask students to remember back to Lab 2, where the slopes of the a vs. 1/r2 graphs were
different for different parent bodies.  We assumed that there was some relationship
between the slope of the graph and the mass of the parent body.  It is now possible to
confirm this constant of proportionality, which is G, the value determined by Cavendish.
In the last lab, the equation we found was

a = k(1/r2)
Students can now share data between groups to make a new data table including the mass
of the parent body and the slope of the a vs. 1/r2 graph.  The masses of the parent bodies
will need to be looked up in a table.

Parent Body Mass (kg) Slope of line (k) (m3/s2)
Earth 0.0059742 10^27 0.00392 10^17
Uranus 0.08722 10^27 0.0578 10^17
Sun 1989.1 10^27 1330. 10^17
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Students can then graph this relationship, making sure to put all numbers of the same
variable to the same power of 10.  When graphing, again enter only the mantissa in the
data column and enter the exponent in with the units.

This should produce a linear graph.  Graphical Analysis will then calculate the slope, and
the students will have to modify the slope number by including the exponents shown with
the units.

The slope should come out very close to 6.67 10^-11 m3/s2kg, which is the Constant of
Universal Gravitation, G.  The more common units are Nm2/kg2, and you may want to
have the students show how these units are equivalent.
Working backward, if we know that the slope of the line is G (comparing to the value
determined by Cavendish), then the equation for this line is

k = GM

and therefore substituting this in our original equation we get

a = GM(1/r2)
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Again, if we want to speak in terms of forces rather than accelerations, we can multiply
the acceleration by the mass of the satellite (m) to get the force on the satellite.  We will
need to multiply the other side of the equation by the mass of the satellite as well.

ma = m GM(1/r2)

F = GMm/r2

Since the "a" in the original equation was the centripetal acceleration, the F must be the
centripetal force, Fc.  We can rewrite the equation as

Fc = GMm/r2

Thinking back to the original reasoning for Lab 2, we said that the only force acting on
the satellite was the force of gravity.  The force of gravity, therefore, must be the
centripetal force.

Fc = Fg

And therefore,

Fg = GMm/r2

which is Newton's Law of Universal Gravitation.
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Name ____________________________________ Date ______________ Per.________

Unit VIIIa

Worksheet 2

The National Academy of Sciences, in order to gather information in deforestation,
wishes to place a 500 kg infrared-sensing satellite in a polar orbit around the Earth.  The
radius of the Earth is approximately 6.38 x 103 km, and the acceleration of gravity at the
orbital altitude of 160 km is very nearly the same as it is at the surface of the Earth.
Show all work.

1. Construct a force diagram for the satellite described in the above statement.

2. What is the agent of the centripetal force for the satellite?

3. How much work is done on the satellite during one complete orbit of the Earth?
Explain your answer.

4. Determine how long it will take for the satellite to make one complete revolution
around the Earth.  (From acceleration data determine the average circular velocity.)

The Earth’s orbit around the sun is very nearly circular, with an average radius of 1.5 x
108 km or 1.5 x 1011 m.  Assume the mass of the Earth is 6 x 1024 kg and the mass of the
Sun is 2 x 1030 kg.  One year is equal to 3.156 x 107 seconds.  G = 6.672 x 10-11 N•m2/kg2

5. What is the average speed (km/sec and m/s) of the Earth in its orbit around the
Sun?
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6. What is the magnitude of the Earth’s average acceleration in its orbit around the
Sun?

7. With how much force does the Sun attract the Earth?

8. With how much force does the Earth attract the Sun?

9. Using Newton’s Law of Universal Gravitation ( F = Gm1m2/r2), what happens to
the Force when you double m1?    When you double m2?

10. Using Newton’s Law again, what happens to the Force when you double r (the
distance between the centers of the 2 masses)?    When you triple r?

11. Calculate the gravitational force between the Sun and the Earth.  How does this
compare with the answer to question 7?

12. Calculate the gravitational force between the Moon and the Earth (Moon mass =
7.35 x 1022 kg  with a distance between the mass centers of 384,000 km).   Don’t
forget to convert to m.
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Unit VIIIa

Derivation of Kepler’s Third Law From Newton’s Laws of
Motion & Law of Universal Gravitation

Teacher Notes
Newton believed that the influence of the Sun forced the natural straight-line motion of
the planet into a curve.  He demonstrated Kepler’s Laws would be true if and only if
forces exerted on the planets are always directed toward a single point.  Such a force is
called a central force. Planets obey the law of areas (Kepler’s Second Law) no matter
what the magnitude of the force, as long as the force is directed toward the same point
(i.e., the Sun).  How then do we demonstrate that a central gravitational force would
cause the exact relationship observed between the orbital radii and the period of the
planets, as given by Kepler’s Third Law?1

Newton’s Laws of Motion:
1. Every object continues in its original state (at rest or in uniform motion – uniform speed in a

straight line) unless acted upon by an unbalanced (net) force.
 a. If an object is at rest or in uniform motion,

then the forces acting on it must sum to zero (a zero net force).
2. The change in motion of an object (acceleration) is equal to the ratio of the net force acting on

the object and the object’s mass:  a = F/m.   This equation also shows then that the net force is
equal numerically to and in the same direction as the acceleration of the object multiplied by
its mass:  Fnet = ma.

3. If one object exerts a force on a second object, the second object in turn exerts an equal but
oppositely directed force on the first object.

Kepler’s Three Laws of Planetary Motion:
1. The planets orbit the Sun in

ellipses with the Sun at one
focus and nothing at the other
focus.

2. An imaginary line connecting
the Sun and a planet sweeps
out equal areas in equal time

3. The squares of the periods of
the planets are proportional to
the cubes of the average
distances from the Sun.
(Law of Periods)

1Cassidy, Holton, Rutherford, Understanding Physics , p.179, Springer-Verlag, New York 2002
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Newton observed that elliptical orbits of the planets around the Sun had to be the effect
due to a central force directed at the Sun.  Using his Second Law and a geometrical
analysis of planet motion, Newton showed that planets move according to Kepler’s Law
of Areas.  He then found that motion in an elliptical path would only occur when the
central force was an inverse-square force:   Fc ∝ 1/R2  .  Thus, only an inverse square
distance force exerted by the Sun would cause the elliptical orbits of planets observed by
Kepler.  Newton then proved the argument by showing how this inverse square law
would result in Kepler’s Third Law, T2 ∝ R3:

Let’s consider the special case of an ellipse that is a circle.

Since the centripetal force equals the force of gravity for an orbiting body

 Fc   =    Fg

mac  = GMm
             r2

The formula for centripetal acceleration ac of a body moving in a circular path with radius
R and period T:

ac = v2    and velocity is:  v = 2πR
       R                                                                             T

Therefore, combining the above expressions yields

 ac =   4π2R2  .  1    =  4π2R
              T2       R          T2

Substituting this expression for ac  into the original force equation gives

m•4π2R  = GmMsun

T2                R2

Dividing out mass of the planet and using algebra, Newton showed Kepler’s Law of
Periods:

T2 
 =   4π2       = constant

R3      GMsun

(If the units of R are AU (astronomical units) and the units of time are Earth years, then
R3 = T2.)

Newton still had more evidence from telescopic observations of Jupiter’s moons and
Saturn’s moons.  These moons also obeyed Kepler’s Laws with each planet as the larger,
central mass:

T2 
 =   4π2       = constant

R3      GMplanet
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with a different constant for each planet (from reviewing the equation, the difference is
due to the different masses of the central object).

Using this combined Kepler-Newton equation, one can now determine the mass (kg) of
the central object (assuming the mass of the moon or satellite is much smaller than the
central object mass and assuming circular orbits) by just knowing the orbital period (T in
sec) of the satellite and its orbital radius (R in m as measured from the centers of the
objects):

     M =  (4π2) (R3)
    G T2

Where G = 6.673 x 10-11 N m2/kg2.
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Name ______________________________________ Date ______________ Per.__________

Unit VIIIa:   Worksheet 3
1. The gravitational field strength on the Moon, which has a radius of 1.74 x 106 m, is

approximately 0.17as large as the gravitational field strength at the surface of the
Earth.  How much would a 1500 kg satellite weigh at the surface of the Moon?

Assume the diagram below represents the orbit of the satellite around the Moon at an
altitude of 100 km.

2. Construct a force diagram of the satellite in orbit.  What
is the direction of the acceleration of the satellite?

3. What is the orbital radius of the satellite?

4. What is the orbital speed of the satellite?

5. What is the orbital period (in hours)?

6. If the satellite were to change its orbit so that it was now at an altitude of 50 km, would
its velocity have to increase or decrease to remain in orbit?  By what factor would the
velocity change?  Explain.
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Name ________________________________ Date _____________ Per.______________

Unit VIIIa

Worksheet 4

1. Applying Kepler’s Law of Periods to the first 6 planets, determine the average value of
the constant  R3 /T2 using AU and Earth years.

2. Using meters and seconds for the orbital elements of the first 6 planets, determine the
average value for the Mass of the Sun.  (1 year = 3.156 x 107 s)
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Unit VIIIa

Laboratory Activity 4: Geometry of the Jupiter-Moons
System

Teacher Notes

Objectives
1) That students can measure period and orbital radius of a moon going around a planet

when viewed from the side.
2) That students understand that these are the two variables needed to determine the mass

of the central planet using Kepler’s 3rd Law.

Pre-lab discussion
Show the Quicktime movie, JupitersMoons.mov.  This was created using the software
“Starry Night Pro”.  Detailed instructions on how to prepare your own are included in the
separate “Teacher’s Notes”.

Ask students for observations of what they’re viewing.  They will probably say things
about the speeds of the moons, period of orbits, tilt of orbits, shape or size of orbits,
rotation of Jupiter, mass, etc.  What do they notice about the apparent speed of the moon
at different positions in the orbit?  What about the speeds of the moons relative to each
other?  What are the variables involved?  Lead them toward observations about period
and orbital radius if they don’t naturally emerge.

Assignment in student groups

Part I
Make a sketch of what the Jupiter-Moons orbits would look like if we could view them
from the “top”, i.e. directly above Jupiter’s axis of rotation.  Make 2 more sketches that
show how they would appear as our view shifts away from the axis.  Now make a sketch
of this system when viewed from the side or edge, i.e. 90 degrees off axis.  What view do
you think we are seeing in the movie shown above?  (Teacher: You might like to have
this movie playing in “loop” mode somewhere in the room during this activity.)  Make
one final sketch showing how one moon would appear at 6 one-hour intervals, when
viewed from the side.  Assume its period is much larger than 6 hours.    Prepare your
whiteboard presentation summarizing your results.

The expectation here would be rough sketches rather than artistic drawings.  Look for
orbital shapes that vary from being circles (top view) to ellipses (view at an angle) to
straight lines (side view).  The final sketch of the single moon would be 6 points in a
straight line perpendicular to Jupiter’s rotational axis.  They may or may not be uniformly
spaced.  Accept either one at this point and allow for some discussion during the
whiteboard presentations.
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Whiteboard presentations
Students do whiteboard presentations of the work in Part I before going on to Part II.  It is
particularly important to focus the students on the edge view, since that is the one we
actually have of Jupiter from the earth and will use later on.  During this time the
following concepts should be introduced and defined:  orbital radius, period, turnaround
points (the extreme horizontal positions of the moons), transit region (when the moon
passes in front of the planet) and occultation region (when the moon passes behind the
planet).

End this time by asking the students the following two questions:  1) “If you have only
the side view of the moon’s orbit, at what position or positions can you measure its
orbital radius?”  2) “How would you measure the period of this same moon?”  This could
be a short group discussion.  Hopefully the students will see:  1) that the orbital radius
can only be measured at the two turnaround points; 2) that the period is the time for the
moon to return to the same starting spot moving in the same direction.

Part II
Create a physical model that simulates the rotation of one moon around a planet when
viewed from the edge.  The model must allow you to take data of position of the moon
versus time.  Take data from your model for at least one orbit of the moon around the
planet.  Create an appropriate presentation of this data.  Determine the orbital radius and
period of the moon.  If you had this particular data of an actual moon around an actual
planet, how would you use it to determine the mass of the planet?

Note to teacher:  This activity can be left completely open-ended, or students can be
given access to a turntable with a digital or video camera, for example.  Digital cameras
which do not have a Quicktime movie mode can be used to record still images of the
“moon” shown in multiple positions.  There are many other possibilities for models.  1)
Students can suspend a mass from a string, let it hang vertically and move it in a circle.
The view from the side is identical to the turntable.  A camera could capture this view.
2) Students can draw a circle for an orbit on a piece of paper and locate small balls or
marbles at uniform positions around the circle.  They can then either sight or physically
measure distances on this setup.  3) #2 above could be done without using balls and
simply marking uniform positions along the circle.  Measurements can be taken with
rulers.  (For details of this method see “Hands-On Universe” curriculum booklet,
Measuring Size, Supplementary Activity 3: Simulating Orbits (pp. 20-21), and Teacher
Notes, pp. 32-34).

 Included in this curriculum guide is another Quicktime movie (Turntable Model3.mov)
from which students may take position and time data.  In the movie, positions to the left
of center are considered to be negative.  The “moon” may be moved in increments of
1/15 sec. by hitting the right arrow key on the computer.  The scale in the background
shows units of 1 cm.  An explanation of the creation of this movie is given in the
“Teachers Notes”.  An Excel spreadsheet of data taken from this movie is given in the
file, TurntableSim3.xls, shown below.  The software, “Graphical Analysis”, can easily be
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used instead, taking advantage of its plotting and curve fitting features.  The goal of this
process will be to determine the period (T) and the orbital radius (r) of the moon.

The orbital radius is easily found from the above plot by measuring the “amplitude” of
the apparent sine wave.  This value is approximately 13 cm.

The period of the orbit can be obtained in a number of different ways.  For example, by
extrapolating the left and right ends of the graph to the zero position the full period is
approximately 27.5 time units.  Each time unit is 1/15 sec, so the period is 1.8 seconds.
Since this turntable was rotating at 33 1/3 rpm, ideally, 1.8 seconds is a reasonable result.

Whiteboard presentations
Students present their data to the entire class, explaining the model they used, their
methods for taking and analyzing data, and their result of orbital radius and period.

Supplemental Notes for Laboratory Activity 4
“Geometry of the Jupiter-Moons System”

Creating the Jupiter’s Moons movie from the “Starry Night Pro” software:
1) Open the program.  At the upper left, below the tools, make sure “Time”, “Planets”

and “Display” are turned ON.
2) Turn off “Daylight” and “Horizon” using the pull-down Sky menu at the top or the

menu at the left side.  Also on the left side turn off “Stars” and make sure “Planets”
are turned on.  You may want to turn other celestial objects OFF as well, but they
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don’t make too much difference in this case.  You should have a dark sky at this point.
3) Go to “Location” and set “Fixed heliocentric position”.  Click on “Set Location”.
4) Go to “Planets” window on lower right and double-click on Jupiter.  This will center

Jupiter in the dark screen and lock it there.
5) Depending on the time of the display it is possible that you may have a planet, or the

moon, in your display or covering up Jupiter.  If that is the case, run the time forward
or backward to move these objects out of the way.  This is done in the “Time” window
at the lower right and pressing the appropriate arrow.

6) Zoom in on Jupiter by pressing the + magnifier about half-way down the left-hand
menu.  Keep pressing this button until the moons of Jupiter appear and spread away
from the planet.  Jupiter also changes from a white dot to an actual image of the
planet.

7) In the “Time” window set the minutes to 20 (each frame represents an actual 20
minutes) and run the simulation.  You will see the moons moving in their orbits and
Jupiter rotating.

8) To shift the display so that the moons are moving horizontally, go to the tools in the
upper right corner.  Press the rotation tool, just below the hand, and apply this to the
display as needed for the orientation you desire.

9) At this point you may need to adjust the magnification so that the outermost orbit
extends over the entire screen.

10) This simulation may now be run as long as you want for viewing by the students.  If,
however, you wish to create a short, Quicktime movie, you will use the movie icon
(tool in upper right corner) and consult the “Starry Night Pro” User’s Manual for
instructions on “Making Movies”.  If you don’t have a hard copy of the manual, it is
available online through the Help menu.  The advantage of this step is that the movie
you create can be played on any computer which has Quicktime.  It doesn’t require
Starry Night Pro.

Creating the Turntable Model movie and recording the data:
This simple, physical model uses an old record player turntable with a ping pong ball
taped to the outer edge of the turntable.  Black paper is used to cover up as much of the
changer mechanism as possible.  A scale in 1 cm units is placed behind the turntable.
The zero point on the scale is adjusted to coincide with the central axis of the turntable.
The turntable is set to rotate at the slowest speed possible, in this case at 33 1/3 rpm.

An Olympus digital camera (D-510) with a Quicktime movie feature was set on a tripod
in front of the apparatus and at the same level of the turntable.  This allowed a side view
of the rotation.  The zoom was set so that the turntable filled the screen and the ball could
be seen at both horizontal extremes.  This particular camera runs a standard 15 second
sequence of frames at 1/15 sec/frame.  The file is then downloaded to a computer and run
with Quicktime.

To record data the movie is incremented, frame by frame, using the right arrow key.  At
each position the distance of the ball from the axis center is measured.  Time increments
are at 1/15 sec.  The data table is recorded and processed in Excel, Graphical Analysis,
etc.
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Unit VIIIa

Laboratory Activity 5: Mass of Jupiter Lab
Teacher Notes

In order for this lab to be done, students and teachers must have a working knowledge of
the “Hands-On Universe©” Image Processing software.  See http://lhs.berkeley.edu/hou

Objective
The students will take data from a set of real images of Jupiter and its moons to
determine the mass of Jupiter.  This will require finding a way to measure the orbital
radius and period of one of the moons.

Pre-lab discussion
Using the “Hands-On Universe©” Image Processing software display the images, Jup5
and Jup6, side by side on the computer screen.  These are from the unit, Tracking
Jupiter’s Moons.  (See screen shot below.)  Tell the students that these are actual images
taken one hour apart.  What do they see?  Encourage observations about position, motion,
direction, etc. of the moons.  Can they easily tell relative position between the two
images?  Go through the procedure of subtracting Jup6 from Jup5 to display the data in a
single image.  This would be a good review of this procedure.  (See the second screen
shot below.  The white dots are from Jup5 and the black dots from Jup6.)  Now what do
they see?  The position and direction of motion will be much clearer.  Which moon
appears to moving fastest?  Slowest?  Any idea of which moon is which (Io, Europa,
Callisto, Ganymede)?
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Student Lab
This lab is already included in the “Hands-On Universe©” curriculum booklet,
Measuring Size.  (Tracking Jupiter’s Moons Unit, pp. 13-19, and The Mass of Jupiter
Unit, pp. 56-61)  Teacher notes are included in the “HOU” Teacher Book (pp. 40-42).  It
is not necessary for the students to complete all activities in these two units.  For
example, if students are already familiar with the “HOU” image processing software
tools, including the procedure for adding and/or subtracting images, they can easily begin
with Activity III (“What Happens to the Moons During Six Hours?”).  They would
follow steps 5 through 7, only.  Then they move to The Mass of Jupiter Unit.

To do this activity requires use of computers for viewing the images.  Working in pairs or
triads around a single computer is often a very effective way to involve students in
collaboration and discussion.  If sufficient computers are not available then printouts of
the individual images and/or the composite image can be used.  In that case the working
groups could be larger.

The goal of this lab is, ultimately, to calculate the mass of Jupiter by measuring the
orbital radius and period of one of Jupiter’s moons.  Kepler’s 3rd Law is then used for the
final calculation of mass.  The difficulty for the students will be in dealing with data that
represents only a partial period of an orbit.  It is recommended that the emphasis of this
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activity be on the method or methods used to determine radius and period, and not on the
final mass calculation.  Encourage a variety of methods throughout the class.

Post-lab Discussion during Whiteboarding
Students should include in their presentations a discussion of the following:  1) the
method for finding the orbital radius and period of one moon and their rationale for
choosing that particular moon; 2) the final calculation of the mass of Jupiter and its
comparison to the published value; 3) the sources of error in their method, given that they
had to use incomplete data.  A rich source of dialogue after the presentations are
completed can be a group debate over which method is “the most accurate”.  The students
may be able to come to the conclusion that the method that yields the closest value to the
published mass is not necessarily the most accurate method.  The mass calculation
depends upon both radius and period, and major errors in both numbers can, possibly,
cancel each other.  (Recall:  M = 4π2r3/GT2)
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Name ________________________________ Date _____________ Per._________
Unit VIIIa

Worksheet 5: Mass of Black Hole
at the Center of the Milky Way Galaxy

"SgrA*" and S2 are identified in the left panel. The right panel displays the orbit of S2 as observed between 1992
and 2002, relative to SgrA* (marked with a circle). The positions of S2 at the different epochs are indicated by
crosses with the dates (expressed in fractions of the year) shown at each point. The size of the crosses indicates
the measurement errors. The solid curve is the best-fitting elliptical orbit - one of the foci is at the position of
SgrA*. Credit: ESO

1. Using the Kepler-Newton equation, M =  (4π2 /G) (R3 /T2), determine the Mass of the
central black hole using the orbital data from the above graph.  You will note that R is
replaced by a, the semi-major axis of S2 elliptical orbit.       G = 6.673 x 10-11 N m2/kg2

a. The orbital period is 15.2 years   (reference: 1 year = 3.16 x 107 sec )
b. The closest point of S2 to SgrA* is 17 light-hours; the furthest point of

S2 from SgrA* is 10 light-days (reference: 1 light-hour =1.08 x 1012 m)
c. The semi-major axis (a) is equal to _ the greatest distance (the line through
    the foci of the ellipse) across the ellipse.  Use this value ‘a’ for R.

2. Another group used the same data points and determined the orbital elements of S2
were a period of 15.6 days with a periastron (closest point) of 17 light-hours and an
apastron (furthest point) of 5 light-days.  Calculate the mass of the central black hole with
this data
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Unit VIIIa

WS5 Teacher Notes: Applying Kepler’s Third Law to
Non-Circular Elliptical Orbits

The only difference is to use ‘a’ (semi-major axis) in place of R in the Kepler-
Newton Mass Equation.

Reference: 1 year = 3.16 x 107 sec;   1 light-hour =1.08 x 1012 m

Kepler’s Laws of Motion can be applied universally to all kinds of orbiting bodies in
space, including stars around massive black holes.

• a = semimajor axis
• e = eccentricity
• Ra = Aphehion radius
• Rp = Perihelion radius

The orbital point that is
farthest from the central body
is called the aphelion (Sun at a
focus), apogee (Earth at a
focus), or apastron (star at a
focus).  The orbital point that
is closest to the central body is
called the perihelion (Sun),
perigee (Earth), or apastron
(star).

The eccentricity of an ellipse can be
defined as the ratio of the distance between
the foci to the major axis of the ellipse. The
eccentricity is zero for a circle. Of the
planetary orbits, only Pluto has a large
eccentricity.

Examples:

Planetary orbit eccentricities
Mercury .206 Saturn .0556

Venus .0068 Uranus .0472

Earth .0167 Neptune .0086

Mars .0934 Pluto .25

Jupiter .0485



HOU Modeling Unit p. 47

Johannes Kepler (1571-1630), the German
assistant and successor to Tycho Brahe, believed
the Copernican Heliocentric Model of the Solar
System from his twenties on, and was destined to
bring about acceptance of this concept. That is, he
believed the sun rather than the earth was the
center of the planetary system.

The life-long question that concerned Kepler was the nature of the timing and motion of
the celestial machinery, for he was convinced that simple mathematical relations could
make sense of the planetary system. He saw the planetary system operating according to
its own set of mathematical laws which was quite a radical idea for his time.

Kepler was a mathematician rather than an observer. Yet, Kepler was supplied with years
of impeccable data by his employer Tycho Brahe who had carefully marked the position
of Mars in relationship to the rest of the celestial map. Kepler rejected many ideas, such
as circular orbits, because they did not fit Brahe's observations. In 1609, Johannes Kepler
finally published his first two laws of planetary motion in a book entitled New
Astronomy. A decade later (1619), his third law was published in The Harmonies of the
World.

Kepler developed his empirical laws from Brahe's data on Mars: "By the study of the
orbit of Mars," he said, "we must either arrive at the secrets of astronomy or forever
remain in ignorance of them." However, in what proved to be a revolutionary step,
Kepler then generalized saying that his laws applied to all the planets, including the
Earth, without ever actually verifying that this was indeed true. Now we now know, they
even apply to comets. Perhaps even beyond Kepler’s dreams, the generalization of his
laws predict and explain the motion of satellites orbiting the earth, moons orbiting
planets, stars orbiting another star, etc.  The expectation that the mathematical laws of
science are universal is so readily accepted in our time that it is difficult to comprehend
just how important Kepler's actions were to science.

Kepler's work put to rest any notion that planets move in perfectly circular orbits because
nature has decreed that the heavenly bodies must show perfection in their movements. He
also put to rest in the scientific community an ancient idea that there exists a mystical
complex motion of planets that somehow governs our ways. Although Kepler never knew
why planets move by the empirical relationships articulated in his three laws, he
diligently sought a cause of which these three laws were the effect. As he stated, "I am
much occupied with the investigation of physical causes. My aim in this is to show that
the celestial machine is ...... rather a clockwork...".

Kepler vaguely sensed that bodies have a natural "magnetic" affinity for each other and
guessed that the Sun has an attractive force. However, it remained for Newton, half a
century later, to formulate a unified theory of motion invoking gravity as the cause of
planetary motion.
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Solution to U8a WS5 Prob.#1:
M =  (4π2 /G) (a3 /T2) a (for S2) = 17 + 24(10) = 257 = 128.5 light-hours

2 2

a = 128.5 x 1.08 x 1012 m = 1.3878 x 1014 m
a3 = 2.6729 x 1042 m3

T = 15.2 years = 15.2 x 3.16 x 107 sec = 4.803 x 108 sec
T2 = 2.307 x 1017 sec2

Where G = 6.673 x 10-11 N m2/kg2  4π2  =     39.48            =   5.916 x 1011

                G          6.673 x 10-11

Therefore,   M = 4π2  (a3)  = 5.916 x 1011 x 2.6729 x 1042   = 6.854 x 1036 kg
                            G   (T2)                            2.307 x 1017

Dividing the answer by one solar mass of 2 x 1030 kg yields a mass of the Central Black
Hole of:

6.854 x 1036 = 3.43 million Solar Masses
2 x 1030

See http://www.space.com/scienceastronomy/mystery_monday_031124.html for discussion of
latest Black Hole estimate.
For years scientists said the black hole contained about 2.6 million times the mass of the
Sun. They now believe the figure is somewhere between 3.2 million and 4 million solar
masses.


